Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco.

Identifieur interne : 001A53 ( Main/Exploration ); précédent : 001A52; suivant : 001A54

Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco.

Auteurs : Thomas Stanislas [France] ; David Bouyssie ; Michel Rossignol ; Simona Vesa ; Jérôme Fromentin ; Johanne Morel ; Carole Pichereaux ; Bernard Monsarrat ; Françoise Simon-Plas

Source :

RBID : pubmed:19525550

Descripteurs français

English descriptors

Abstract

A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, we used (14)N/(15)N metabolic labeling to compare, using a global quantitative proteomics approach, the content of tobacco detergent-resistant membranes extracted from cells treated or not with cryptogein, an elicitor of defense reaction. To analyze the data, we developed a software allowing an automatic quantification of the proteins identified. The results obtained indicate that, although the association to detergent-resistant membranes of most proteins remained unchanged upon cryptogein treatment, five proteins had their relative abundance modified. Four proteins related to cell trafficking (four dynamins) were less abundant in the detergent-resistant membrane fraction after cryptogein treatment, whereas one signaling protein (a 14-3-3 protein) was enriched. This analysis indicates that plant microdomains could, like their animal counterpart, play a role in the early signaling process underlying the setup of defense reaction. Furthermore proteins identified as differentially associated to tobacco detergent-resistant membranes after cryptogein challenge are involved in signaling and vesicular trafficking as already observed in similar studies performed in animal cells upon biological stimuli. This suggests that the ways by which the dynamic association of proteins to microdomains could participate in the regulation of the signaling process may be conserved between plant and animals.

DOI: 10.1074/mcp.M900090-MCP200
PubMed: 19525550
PubMed Central: PMC2742443


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco.</title>
<author>
<name sortKey="Stanislas, Thomas" sort="Stanislas, Thomas" uniqKey="Stanislas T" first="Thomas" last="Stanislas">Thomas Stanislas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institut National de Recherche Agronomique, Unité Mixte de Recherche Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut National de Recherche Agronomique, Unité Mixte de Recherche Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Poitou-Charentes</region>
<settlement type="city">F-21000 Dijon</settlement>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bouyssie, David" sort="Bouyssie, David" uniqKey="Bouyssie D" first="David" last="Bouyssie">David Bouyssie</name>
</author>
<author>
<name sortKey="Rossignol, Michel" sort="Rossignol, Michel" uniqKey="Rossignol M" first="Michel" last="Rossignol">Michel Rossignol</name>
</author>
<author>
<name sortKey="Vesa, Simona" sort="Vesa, Simona" uniqKey="Vesa S" first="Simona" last="Vesa">Simona Vesa</name>
</author>
<author>
<name sortKey="Fromentin, Jerome" sort="Fromentin, Jerome" uniqKey="Fromentin J" first="Jérôme" last="Fromentin">Jérôme Fromentin</name>
</author>
<author>
<name sortKey="Morel, Johanne" sort="Morel, Johanne" uniqKey="Morel J" first="Johanne" last="Morel">Johanne Morel</name>
</author>
<author>
<name sortKey="Pichereaux, Carole" sort="Pichereaux, Carole" uniqKey="Pichereaux C" first="Carole" last="Pichereaux">Carole Pichereaux</name>
</author>
<author>
<name sortKey="Monsarrat, Bernard" sort="Monsarrat, Bernard" uniqKey="Monsarrat B" first="Bernard" last="Monsarrat">Bernard Monsarrat</name>
</author>
<author>
<name sortKey="Simon Plas, Francoise" sort="Simon Plas, Francoise" uniqKey="Simon Plas F" first="Françoise" last="Simon-Plas">Françoise Simon-Plas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19525550</idno>
<idno type="pmid">19525550</idno>
<idno type="doi">10.1074/mcp.M900090-MCP200</idno>
<idno type="pmc">PMC2742443</idno>
<idno type="wicri:Area/Main/Corpus">001A75</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A75</idno>
<idno type="wicri:Area/Main/Curation">001A75</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A75</idno>
<idno type="wicri:Area/Main/Exploration">001A75</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco.</title>
<author>
<name sortKey="Stanislas, Thomas" sort="Stanislas, Thomas" uniqKey="Stanislas T" first="Thomas" last="Stanislas">Thomas Stanislas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institut National de Recherche Agronomique, Unité Mixte de Recherche Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut National de Recherche Agronomique, Unité Mixte de Recherche Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Poitou-Charentes</region>
<settlement type="city">F-21000 Dijon</settlement>
</placeName>
<orgName type="university">Université de Bourgogne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bouyssie, David" sort="Bouyssie, David" uniqKey="Bouyssie D" first="David" last="Bouyssie">David Bouyssie</name>
</author>
<author>
<name sortKey="Rossignol, Michel" sort="Rossignol, Michel" uniqKey="Rossignol M" first="Michel" last="Rossignol">Michel Rossignol</name>
</author>
<author>
<name sortKey="Vesa, Simona" sort="Vesa, Simona" uniqKey="Vesa S" first="Simona" last="Vesa">Simona Vesa</name>
</author>
<author>
<name sortKey="Fromentin, Jerome" sort="Fromentin, Jerome" uniqKey="Fromentin J" first="Jérôme" last="Fromentin">Jérôme Fromentin</name>
</author>
<author>
<name sortKey="Morel, Johanne" sort="Morel, Johanne" uniqKey="Morel J" first="Johanne" last="Morel">Johanne Morel</name>
</author>
<author>
<name sortKey="Pichereaux, Carole" sort="Pichereaux, Carole" uniqKey="Pichereaux C" first="Carole" last="Pichereaux">Carole Pichereaux</name>
</author>
<author>
<name sortKey="Monsarrat, Bernard" sort="Monsarrat, Bernard" uniqKey="Monsarrat B" first="Bernard" last="Monsarrat">Bernard Monsarrat</name>
</author>
<author>
<name sortKey="Simon Plas, Francoise" sort="Simon Plas, Francoise" uniqKey="Simon Plas F" first="Françoise" last="Simon-Plas">Françoise Simon-Plas</name>
</author>
</analytic>
<series>
<title level="j">Molecular & cellular proteomics : MCP</title>
<idno type="eISSN">1535-9484</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algal Proteins (pharmacology)</term>
<term>Cell Membrane (drug effects)</term>
<term>Cell Membrane (metabolism)</term>
<term>Detergents (pharmacology)</term>
<term>Fungal Proteins (MeSH)</term>
<term>Luminescent Measurements (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Peptides (analysis)</term>
<term>Peptides (chemistry)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (metabolism)</term>
<term>Protein Binding (drug effects)</term>
<term>Proteomics (methods)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Staining and Labeling (MeSH)</term>
<term>Tobacco (cytology)</term>
<term>Tobacco (drug effects)</term>
<term>Tobacco (metabolism)</term>
<term>Tobacco (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Coloration et marquage (MeSH)</term>
<term>Détergents (pharmacologie)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Liaison aux protéines (effets des médicaments et des substances chimiques)</term>
<term>Membrane cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Mesures de luminescence (MeSH)</term>
<term>Peptides (analyse)</term>
<term>Peptides (composition chimique)</term>
<term>Protéines d'algue (pharmacologie)</term>
<term>Protéines fongiques (MeSH)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéomique (méthodes)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Tabac (cytologie)</term>
<term>Tabac (effets des médicaments et des substances chimiques)</term>
<term>Tabac (microbiologie)</term>
<term>Tabac (métabolisme)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptides</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Algal Proteins</term>
<term>Detergents</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Peptides</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Membrane</term>
<term>Protein Binding</term>
<term>Signal Transduction</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Liaison aux protéines</term>
<term>Membrane cellulaire</term>
<term>Tabac</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Membrane cellulaire</term>
<term>Protéines végétales</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Protéomique</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Détergents</term>
<term>Protéines d'algue</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Fungal Proteins</term>
<term>Luminescent Measurements</term>
<term>Mass Spectrometry</term>
<term>Staining and Labeling</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Coloration et marquage</term>
<term>Mesures de luminescence</term>
<term>Protéines fongiques</term>
<term>Spectrométrie de masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, we used (14)N/(15)N metabolic labeling to compare, using a global quantitative proteomics approach, the content of tobacco detergent-resistant membranes extracted from cells treated or not with cryptogein, an elicitor of defense reaction. To analyze the data, we developed a software allowing an automatic quantification of the proteins identified. The results obtained indicate that, although the association to detergent-resistant membranes of most proteins remained unchanged upon cryptogein treatment, five proteins had their relative abundance modified. Four proteins related to cell trafficking (four dynamins) were less abundant in the detergent-resistant membrane fraction after cryptogein treatment, whereas one signaling protein (a 14-3-3 protein) was enriched. This analysis indicates that plant microdomains could, like their animal counterpart, play a role in the early signaling process underlying the setup of defense reaction. Furthermore proteins identified as differentially associated to tobacco detergent-resistant membranes after cryptogein challenge are involved in signaling and vesicular trafficking as already observed in similar studies performed in animal cells upon biological stimuli. This suggests that the ways by which the dynamic association of proteins to microdomains could participate in the regulation of the signaling process may be conserved between plant and animals.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19525550</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>12</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1535-9484</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Molecular & cellular proteomics : MCP</Title>
<ISOAbbreviation>Mol Cell Proteomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco.</ArticleTitle>
<Pagination>
<MedlinePgn>2186-98</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/mcp.M900090-MCP200</ELocationID>
<Abstract>
<AbstractText>A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, we used (14)N/(15)N metabolic labeling to compare, using a global quantitative proteomics approach, the content of tobacco detergent-resistant membranes extracted from cells treated or not with cryptogein, an elicitor of defense reaction. To analyze the data, we developed a software allowing an automatic quantification of the proteins identified. The results obtained indicate that, although the association to detergent-resistant membranes of most proteins remained unchanged upon cryptogein treatment, five proteins had their relative abundance modified. Four proteins related to cell trafficking (four dynamins) were less abundant in the detergent-resistant membrane fraction after cryptogein treatment, whereas one signaling protein (a 14-3-3 protein) was enriched. This analysis indicates that plant microdomains could, like their animal counterpart, play a role in the early signaling process underlying the setup of defense reaction. Furthermore proteins identified as differentially associated to tobacco detergent-resistant membranes after cryptogein challenge are involved in signaling and vesicular trafficking as already observed in similar studies performed in animal cells upon biological stimuli. This suggests that the ways by which the dynamic association of proteins to microdomains could participate in the regulation of the signaling process may be conserved between plant and animals.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stanislas</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Institut National de Recherche Agronomique, Unité Mixte de Recherche Plante Microbe Environnement 1088/CNRS 5184/Université de Bourgogne, 17 Rue Sully, BP 86510 F-21000 Dijon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bouyssie</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rossignol</LastName>
<ForeName>Michel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vesa</LastName>
<ForeName>Simona</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fromentin</LastName>
<ForeName>Jérôme</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morel</LastName>
<ForeName>Johanne</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pichereaux</LastName>
<ForeName>Carole</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Monsarrat</LastName>
<ForeName>Bernard</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Simon-Plas</LastName>
<ForeName>Françoise</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Proteomics</MedlineTA>
<NlmUniqueID>101125647</NlmUniqueID>
<ISSNLinking>1535-9476</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020418">Algal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003902">Detergents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C061032">cryptogein protein, Phytophthora cryptogea</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020418" MajorTopicYN="N">Algal Proteins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003902" MajorTopicYN="N">Detergents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008163" MajorTopicYN="N">Luminescent Measurements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013194" MajorTopicYN="N">Staining and Labeling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19525550</ArticleId>
<ArticleId IdType="pii">M900090-MCP200</ArticleId>
<ArticleId IdType="doi">10.1074/mcp.M900090-MCP200</ArticleId>
<ArticleId IdType="pmc">PMC2742443</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):104-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Nov 1;415(3):387-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18721128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(7):1537-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):402-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17337521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2003 Oct;24(19-20):3421-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Dec;267(24):6989-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18055608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 Sep;6(9):1621-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17533220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jul;40(4):545-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10480379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):1255-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18184734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Aug;8(8):645-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17593931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2006 Sep 04;2:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16948866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Feb;50(2):341-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19106119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2001 Nov;114(Pt 22):3957-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Sep;15(6):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9807816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jul;31(2):137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12121444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Sep;12(9):2825-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 Jul;6(7):1198-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17317660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Oct;3(5):400-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11019808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Oct;14(10):2627-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2006 Aug;5(8):2039-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16889428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2009 Jan;8(1):201-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18815123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2008 Jan;7(1):108-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2003;21:457-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15703292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Jan 15;369(Pt 2):301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12358599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Dec;5(18):4733-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16267816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2007 Jun;28(12):2035-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Oct;7(19):3462-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):35-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Dec 30;1746(3):252-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16054713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2006 Aug;5(8):1396-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Mar;7(5):750-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17285564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Jul;4(7):857-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2006 Jul;47(7):1597-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16645198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):1590-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Jul;111(3):885-891</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2005 Mar 15;118(Pt 6):1099-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15764592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 4;426(6966):570-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14654843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Aug 27;279(35):36277-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15190066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Apr;10(4):159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Jul 15;1419(2):335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10407084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1937-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Jun 5;387(6633):569-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9177342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2005 Oct;15(10):540-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16139503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2009 Apr;8(4):612-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2000;40:617-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10836149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 1998 Jul 15;164(2):103-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9662555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2003 Apr;44(4):655-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12562849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Apr;7(8):1279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17443642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 May;7(10):1584-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17486556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 May;6(5):860-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Nov;4(11):1673-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2001 Mar;1(3):377-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11680884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Dec;11(6):632-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2002 Mar 5;2002(122):re2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11880687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 13;422(6928):198-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12634793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2005;1:2005.0017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16729052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2008 Feb;7(2):780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18189342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):516-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Oct;27(10):1581-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18612642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Sep;45(9):1202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(7):1637-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17420174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Nov 15;15(22):6241-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8947047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2006 Jun;7(6):625-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jun;30(6):722-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17470148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Nov 10;1376(3):467-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9805010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2008 Nov;22(11):3980-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18676403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Mar;10(3):435-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Oct;53(3):261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14750516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Oct 30;374(2):203-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7589535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Feb;95(2):486-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Jul;69(10):1962-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18538804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jul;138(3):1310-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16010005</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Nouvelle-Aquitaine</li>
<li>Poitou-Charentes</li>
</region>
<settlement>
<li>F-21000 Dijon</li>
</settlement>
<orgName>
<li>Université de Bourgogne</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bouyssie, David" sort="Bouyssie, David" uniqKey="Bouyssie D" first="David" last="Bouyssie">David Bouyssie</name>
<name sortKey="Fromentin, Jerome" sort="Fromentin, Jerome" uniqKey="Fromentin J" first="Jérôme" last="Fromentin">Jérôme Fromentin</name>
<name sortKey="Monsarrat, Bernard" sort="Monsarrat, Bernard" uniqKey="Monsarrat B" first="Bernard" last="Monsarrat">Bernard Monsarrat</name>
<name sortKey="Morel, Johanne" sort="Morel, Johanne" uniqKey="Morel J" first="Johanne" last="Morel">Johanne Morel</name>
<name sortKey="Pichereaux, Carole" sort="Pichereaux, Carole" uniqKey="Pichereaux C" first="Carole" last="Pichereaux">Carole Pichereaux</name>
<name sortKey="Rossignol, Michel" sort="Rossignol, Michel" uniqKey="Rossignol M" first="Michel" last="Rossignol">Michel Rossignol</name>
<name sortKey="Simon Plas, Francoise" sort="Simon Plas, Francoise" uniqKey="Simon Plas F" first="Françoise" last="Simon-Plas">Françoise Simon-Plas</name>
<name sortKey="Vesa, Simona" sort="Vesa, Simona" uniqKey="Vesa S" first="Simona" last="Vesa">Simona Vesa</name>
</noCountry>
<country name="France">
<region name="Nouvelle-Aquitaine">
<name sortKey="Stanislas, Thomas" sort="Stanislas, Thomas" uniqKey="Stanislas T" first="Thomas" last="Stanislas">Thomas Stanislas</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19525550
   |texte=   Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19525550" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024